
Faster Work Stealing With Return Barriers

Vivek Kumar
Australian National University

vivek.kumar@anu.edu.au

Stephen M. Blackburn
Australian National University
steve.blackburn@anu.edu.au

Abstract
Work-stealing is a promising approach for effectively ex-
ploiting software parallelism on parallel hardware. A pro-
grammer who uses work-stealing explicitly identifies poten-
tial parallelism and the runtime then schedules work, keep-
ing otherwise idle hardware busy while relieving overloaded
hardware of its burden. However, work-stealing comes with
substantial overheads. Our prior work demonstrates that us-
ing the exception handling mechanism of modern VMs and
gathering the runtime information directly from the victim’s
execution stack can significantly reduce these overheads.

In this paper we identify the overhead associated with
managing the work-stealing related information on a vic-
tim’s execution stack. A return barrier is a mechanism for
intercepting the popping of a stack frame, and thus is a pow-
erful tool for optimizing mechanisms that involve scanning
of stack state. We present the design and preliminary find-
ings of using return barriers on a victim’s execution stack to
reduce these overheads. We evaluate our design using classi-
cal work-stealing benchmarks. On these benchmarks, com-
pared to our prior design, we are able to reduce the overheads
by as much as 58%. These preliminary findings give further
hope to an already promising technique of harnessing rich
features of a modern VM inside a work-stealing scheduler.

Categories and Subject Descriptors D1.3 [Software]: Con-
current Programming – Parallel programming; D3.4 [Program-
ming Languages]: Processors – Code generation; Compilers; Op-
timization; Run-time environments.
General Terms Design, Performance.
Keywords Scheduling, Task Parallelism, Work-Stealing, X10,
Managed Languages.

1. Introduction
Work-stealing [4, 6, 9, 13] is a widely used framework for
allowing programmers to explicitly expose potential par-

[Copyright notice will appear here once ’preprint’ option is removed.]

allelism. A work-stealing scheduler within the underlying
language runtime schedules work exposed by the program-
mer, exploiting idle processors and unburdening those that
are overloaded. Work-stealing schedulers are used in various
programming languages, such as Cilk [6] and X10 [4], and
in application frameworks, such as the Java fork/join frame-
work [9] and Intel Threading Building Blocks [13].

Although the specific details vary among the various im-
plementations of work-stealing schedulers, they all incur
some form of sequential overhead as a necessary side effect
of enabling dynamic task parallelism. In our prior work [8]
we analyzed the sources of sequential overhead in work-
stealing schedulers and designed and implemented two opti-
mized work-stealing runtimes that significantly reduce over-
heads by building upon existing runtime services of mod-
ern JVMs. Our results demonstrate that we can almost com-
pletely remove the sequential overhead from a work-stealing
implementation and therefore obtain performance improve-
ments over sequential code even at modest core counts.

The techniques that we use in our prior work are:

1. Using the victim’s execution stack as an implicit deque.

2. Modifying the runtime to extract execution state directly
from the victim’s stack and registers.

3. Dynamically switching the victim to slow versions of
code to reduce coordination overhead.

Once a thief finds a potential victim, it exploits the run-
time’s existing yieldpoint mechanism to force the victim to
yield. The victim is stopped while the steal is performed.
However, when steals are frequent, forcing the victim to
yield at each steal becomes costly.

The contributions of this paper are: 1) a detailed study of
the cost associated with stealing from a victim in our prior
work; 2) a detailed design for reducing this overhead and 3)
evaluation of our new design using classical work-stealing
benchmarks.

The rest of the paper is structured as follows. Section 2
discusses the related work. Section 3 provides the relevant
background. Section 4 discusses our evaluation methodol-
ogy. Section 5 discusses the motivation for this work. Sec-
tion 6 explains the design of our new system. Section 7 dis-
cusses the performance evaluation of our new design and
finally section 8 concludes the paper.

Faster Work Stealing With Return Barriers, VMIL 2012 1 2015/8/3



2. Related Work
The ideas behind work-stealing have a long history which in-
cludes lazy task creation [12] and the MIT Cilk project [6],
which offered both a theoretical and practical framework.
In [8], we exploit rich features of modern virtual machines
and build a new work-stealing framework for X10 lan-
guage’s finish-async programming model [16]. We steal only
one task at a time, just as in Java’s fork/join framework [9].

Though stealing one task at a time has been shown to be
sufficient to optimize computation along the ‘critical path’ to
within a constant factor [1, 3], several authors have argued
that the scheme can be improved by allowing multiple tasks
to be stolen at a time [2, 5, 7, 10, 14]. In this work, we
explore a different approach to minimizing steal overheads.
We exploit the return barrier mechanism to optimize the
steal process. The return barrier mechanism is not a new,
it is used in various garbage collectors [15, 17], however, to
our knowledge, it has not been applied to work-stealing until
now.

3. Background
This section provides a brief overview of work-stealing run-
times in the context of the X10 (Try-Catch) implementation
from our prior work [8].

Abstractly, work-stealing is a simple concept. Worker
threads maintain a local set of tasks and when local work
runs out, they become a thief and seek out a victim thread
from which to steal work.

The elements of a work-stealing runtime are often character-
ized in terms of the following aspects of the execution of a
task-parallel program:

Fork A fork describes the creation of new, potentially par-
allel, work by a worker thread. The runtime makes new work
items available to other worker threads.

Steal A steal occurs when a thief takes work from a victim.
The runtime provides the thief with the execution context of
the stolen work, including the execution entry point and suf-
ficient program state for execution to proceed. The runtime
updates the victim to ensure work is never executed twice.

Join A join is a point in execution where a worker waits
for completion of a task. The runtime implements the syn-
chronization semantics and ensures that the state of program
reflects the contribution of all the workers.

Our try-catch work-stealing framework is currently de-
signed for the X10 finish-async style programming model.
In the section below, we will discuss this model briefly.

3.1 Work-Stealing in X10
X10 is a strongly-typed, imperative, class-based, object-
oriented programming language. X10 includes specific fea-
tures to support parallel and distributed programming. A
computation in X10 consists of one or more asynchronous

1 def fib(n:Int):Int {
2 if (n < 2) return n;
3

4 val a:Int;
5 val b:Int;
6

7 finish {
8 async a = fib(n-1);
9 b = fib(n-2);

10 }
11

12 return a + b;
13 }

Figure 1. X10’s finish-async style programming model

activities (light-weight tasks). A new activity is created by
the statement async S. To synchronize activities, X10 pro-
vides the statement finish S. Control will not return from
within a finish until all activities spawned within the scope
of the finish have terminated.

X10 restricts the use of a local mutable variable inside
async statements. A mutable variable (var) can only be
assigned to or read from within the async it was declared in.
To mitigate this restriction, X10 permits the asynchronous
initialization of final variables (val). A final variable may be
initialized in a child async of the declaring async. A definite
assignment analysis guarantees statically that only one such
initialization will be executed on any code path, so there will
never be two conflicting writes to the same variable. Figure 1
shows X10’s finish-async style programming model.

We have modified the X10 compiler to compile to X10
(Try-Catch) and hence, X10 (Try-Catch) represents a new
backend for work-stealing.

3.2 X10 (Try-Catch) Java implementation
3.2.1 Leveraging Exception Handling Support
Most JVMs, including Jikes RVM, have very efficient sup-
port for exception handling. Because exceptions are impor-
tant and potentially expensive, JVM implementers have in-
vested heavily in optimizing the mechanisms. We leveraged
these optimized mechanisms to efficiently implement the pe-
culiar control flow requirements of work-stealing. The X10
(Try-Catch) system annotates async and finish blocks by
wrapping them with try/catch blocks with special work-
stealing exceptions. These allow the X10 (Try-Catch) run-
time to walk the stack and identify all async and finish

contexts within which a thread is executing.

The work-stealing implementation consists of following
basic phases, each of which require special support from the
runtime or library:

1. Initiation. (Allow tasks to be created and stolen atomi-
cally).

2. State management. (Provide sufficient context for the
thief to be able to execute stolen execution).

3. Termination. (Join tasks and ensure correct termination).

Faster Work Stealing With Return Barriers, VMIL 2012 2 2015/8/3



3.2.2 Initiation
X10 (Try-Catch) avoids maintaining an explicit deque for
workers. Instead, marker try/catch blocks are used to com-
municate the current deque state to the work-stealing run-
time. The execution stack of a thread is used as an implicit
deque.

A thief identifies its potential victim by checking the steal
flag maintained by each worker thread. The steal flag is set
as the first action within an async. This flag is cleared when
the worker or a thief determines that there is no more work
to steal. Once a thief finds a potential victim, it uses the
runtime’s yieldpoint mechanism to force the victim to yield
— the victim is stopped while the steal is performed. The
yieldpoint mechanism is used extensively within the runtime
to support key features, including exact garbage collection,
biased locking, and adaptive optimization. Only one thief is
allow to steal from one victim at any given time. Different
thieves can steal from different victims concurrently.

The head of the task deque corresponds to the top of the
execution stack. The list of continuations (from newest to
oldest) is established by walking the set of catch blocks
that wrap the current execution state. Each worker has a
stealToken that acts as a tail for the deque. None of the con-
tinuations found after this point is stolen. This stealToken

also helps in guaranteeing atomicity. It acts as a roadblock
for the worker and thieves to prevent either running or steal-
ing continuations past that point.

3.2.3 State Management
When a task is stolen, the thief must: 1) acquire all state
required to execute that task, and 2) provide an entrypoint
to begin execution of the task, and 3) be able to return or
combine return state with other tasks. Work-stealing imple-
mentations typically meet requirements 1) and 3) through
the use of state objects that capture the required information
about the task, and provide a location for data to be stored
and shared across multiple tasks. Requirement 2) is handled
differently depending on the execution model. This aspect
of our X10 (Try-Catch) implementation is discussed in more
detail below.

3.2.4 Termination
Control must only return from a finish context when all
tasks within the context have terminated. To support this,
a singly linked list is maintained. A node is lazily created
for each finish context in which a task is stolen. This
node maintains an atomic count of the number of active
tasks in the finish context, and provides a location for the
partial results to be passed between threads. When a thread
decrements the atomic count to zero, it becomes responsible
for running the continuation of the finish context. The
X10 (Try-Catch) runtime will deliver a special exception at
the appropriate point, allowing the thread to extract partial
results and continue out from the finish.

3.3 Return Barriers
A return barrier, like a write barrier, allows the runtime to
intercept a common event, and (conditionally) interpose spe-
cial semantics. In the case of a write barrier, a runtime typ-
ically interposes itself on pointer field updates, condition-
ally remembering updates of pointers in certain conditions.
On the other hand, a return barrier [15, 17], interposes spe-
cial semantics upon the return from a method (which cor-
responds to the popping of a stack frame). One use for a
return barrier is to keep track of a ‘low water mark’ for each
stack since some particular event, such as the last garbage
collection. In a language where pointers into the stack are
not permitted, there is a guarantee that no part of the stack
below the low water mark has been changed since the low
water mark was set. This information can be used to reduce
the overhead of stack scanning. In our work, we use a re-
turn barrier to ‘protect’ the victim from stumbling upon an
active thief. We do this by installing a return barrier above
the stealable frames, allowing the victim to ignore all steal
activty that occurs below the low water mark. Only when
the frame above the return barrier is popped does the victim
need to consider the activity of thief.

A naive implementation of a return barrier would require
some (modest) code to be executed upon every return, just
as a write barrier is typically executed upon every pointer
update. In our implementation we insert a trampoline that
hijacks the return of a particular frame (the return is redi-
rected to our trampoline). The trampoline executes the return
barrier semantics (which may include re-installing the re-
turn barrier at a lower frame), before returning to the correct
frame (whose address was remembered in a side data struc-
ture). This barrier has absolutely no overhead in the common
case, and only incurs a modest cost when the frame targeted
by the return barrier is popped.

We now motivate the work presented in the remainder of the
paper with an analysis of the cost of stealing in a well-tuned
work-stealing runtime.

4. Methodology
4.1 Benchmarks
Because the primary goal of our work is to reduce the cost
of steal operations, we have intentionally selected bench-
marks with high steal rates We have used a collection of
three benchmarks, which are briefly described below. In each
case we ported the benchmark to plain Java (for the sequen-
tial case), as well as to our JavaWS (Try-Catch) system, de-
scribed below.

The three benchmarks we have are:

Jacobi Iterative mesh relaxation with barriers: 100 steps
of nearest neighbor averaging on 1024 × 1024 matri-
ces of doubles (based on an algorithm taken from Fork-
Join [9]).

Faster Work Stealing With Return Barriers, VMIL 2012 3 2015/8/3



LUD Decomposition of 1024× 1024 matrices of doubles
(based on algorithm from Cilk-5.4.6 [11]). Block size of
16 is used to control the granularity.

Heat Diffusion Heat diffusion simulation across a mesh of
size 4096× 1024 (based on algorithm from Cilk-5.4.6).
Leaf column size of 10 is the granularity parameter.
Timestep used is 200.

4.2 Hardware Platform
All experiments were run on a machine with two Intel Xeon
E7530 Nehalem processors. Each processor has six cores
running at 1.87 GHz sharing a 12 MB L3 cache. The ma-
chine was configured with 16 GB of memory.

4.3 Software Platform
Jikes RVM Version 3.1.2. We used the production build.

4.4 Measurements
For each benchmark, we ran six invocations, with three itera-
tions per invocation, where each iteration performed the ker-
nel of the benchmark five times. We report the mean of the
final iteration, along with a 95% confidence interval based on
a Student t-test. For each invocation of the benchmark, the
total number of garbage collector threads is kept the same as
application threads. A heap size of 921 MB is used across all
experiments. Other than this, we preserve the default settings
of Jikes RVM.

All of our benchmarks make extensive use of arrays. The
sequential versions of the benchmarks use Java arrays di-
rectly. However, the X10 compiler is not currently able to
optimize X10 array operations directly into Java array oper-
ations, but does so through a wrapper with get/set routines.
To avoid the overhead associated with this indirect array ac-
cesses, we use a system that we call JavaWS (Try-Catch),
which uses try-catch work-stealing but operates directly on
Java arrays without X10.

5. Motivating Analysis
As we noted in our prior work, although work-stealing is
a very promising mechanism for exploiting software paral-
lelism, it can bring with it formidable overheads to the sim-
ple sequential case. In our prior work, we exploited rich fea-
tures that pre-exist within the JVM implementation to sig-
nificantly reduce these overheads. We heavily rely on the
yieldpoint mechanism of the JVM to stop the victim so that
the thieves can extract the required information directly from
the execution stack. However, when the steals become fre-
quent, stopping the victim inside a yieldpoint at each steal
may amount to a significant overhead. In our prior work, we
performed a study to understand steal ratios across a range
of benchmarks. That analysis shows that steals are generally
infrequent, ranging from 1/10 to 1/105 steals/task (see Fig-
ure 6(a)).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

2 3 4 5 6 7 8 9 10 11 12

V
ic

ti
m

 w
a
it
 t
im

e
 C

P
U

 c
y
c
le

s
 (

%
)

Threads

Heat Diffusion

Jacobi

LU Decomposition

Figure 2. Percentage of CPU cycles lost by victims waiting
for the steals to finish in default JavaWS (Try-Catch).

To further motivate our designs, we now measure: 1) the
steal rate (steals/sec); 2) the overhead imposed by the steal
mechanism upon the victims.

5.1 Steal Rate
The steal ratio is only one dimension of the steal overheads.
We now measure the steal rate (steals/sec), which is shown
in Figure 7(a). Steal rate is calculated by dividing the to-
tal number of steals by the benchmark execution time. This
gives an indication of how frequently we are forcing the vic-
tim to execute the yieldpoint. The results obtained for the
Jacobi in both these studies clearly indicates that a bench-
mark with a low steal ratio may have a high steal rate.

5.2 Stealing Overhead
Next we measured the cost of a steal as imposed upon the
victim by the thief. We did this by measuring the percentage
of CPU cycles lost by the victim while waiting for the thief
to finish accessing its execution stack. We measure the CPU
cycles required for the entire execution of the benchmark
using hardware performance counters. We used Jikes RVM’s
existing mechanisms for measuring the number of cycles
spent waiting for the thief to access the victim’s stack. We
start a timer when a victim is forced to execute yieldpoint.
The timer is stopped when the thief finishes accessing the
victim’s execution stack and unlocks the victim from the
yieldpoint. These cycles are summed for all the steals over
the benchmark execution. At the end of execution we get the
total CPU cycles lost to the thief. These are cycles which
the victim could have utilized for carrying out its execution,
had it not been forced to yield to the thief. We calculate this
percentage of lost cycles and plot in Figure 2.

These numbers show that the steal overhead is as much
as 10% for Jacobi.

6. Implementation
This section discusses the modifications made inside the
JavaWS (Try-Catch) runtime [8] to use return barriers for

Faster Work Stealing With Return Barriers, VMIL 2012 4 2015/8/3



(a) Initial state of stack. (b) Thief installs the return barrier on vic-
tim’s execution stack.

(c) Thief installs the return barrier on vic-
tim’s execution stack.

Figure 3. The victim’s stack, installation, and movement of the return barrier.

assisting the steal process from a victim. We use the JavaWS
(Try-Catch) runtime because it is the best performing work-
stealing runtime.

6.1 Installing the First Return Barrier.
Figure 3(a) depicts a typical snapshot of a victim’s execu-
tion stack. The stack frames having a stealable continua-
tion are marked with a * in this figure. The newly executed
methods occupy the stack frame slots on the top of execu-
tion stack. Each stack frame is recognized with the help of
a frame pointer. The value stored inside this pointer is the
frame pointer of the last executed method. The other impor-
tant information, which is of interest to us, is the return ad-
dress, which normally forms part of a stack frame. It holds
the address where the control should be transferred after un-
winding to the caller frame.

Once a thief has decided to rob this victim and discovers
that the victim does not yet have a return barrier installed, the
thief halts the victim by forcing it to execute the yieldpoint
mechanism. After the victim has stopped, the thief starts
scanning the stack frames to identify the oldest stealable
continuation. In this case it is the frame A. However, before
the thief unwinds down to the frame pointer for A, it notices
that the first (newest) available continuation is D. It installs
a return barrier to intercept the return from method E. The
return address stored inside E is modified and this new
address is now that of the return barrier trampoline method.
Thus upon returning from E, the victim will find itself inside
the return barrier trampoline. The trampoline maintains the
address of frame D, and will return execution to D one
the trampoline has been executed. The return address from
the barrier is now the old value from frame E. Figure 3(b)
depicts the victim’s modified execution stack.

The victim holds a private boolean field stealInProgress,
which is now marked as true by the thief. The thief then
creates a clone of the entire stack of the victim and only then
allows its victim to continue. The victim continues the rest of
its computation, oblivious to the activity of the thief, while
the thief proceeds with the steal process using the cloned

stack. The cloned stack is also used for offline manipulation
of the callee save registers.

6.2 Synchronization Between Thief and Victim During
Steal Process.

When the victim finishing executing method E, it will re-
turn via the trampoline method of the return barrier. Before
unwinding to D, the return barrier code checks the stealIn-
Progress flag to determine whether a steal is in progress and
whether the continuation being stolen is D. If D is not being
stolen, the victim will reinstall its return barrier at the next
available continuation after D. This is the method C in this
case. The victim then returns to D and continues computa-
tion until it hits the return barrier again, at which point it
repeats the process. Figure 3(c) shows this newly modified
stack frame of the victim.

In the case where the victim discovers that the frame
below the return barrier is being currently being stolen, it
will wait on a condition variable. Once the steal is complete,
the thief resets the victim’s field stealInProgress to false and
signals the victim. The victim now unwinds to the stolen
frame and becomes a thief.

6.3 Stealing From a Victim with Return Barrier
Pre-installed.

If, upon identifying a potential victim, the thief finds that
there is already a return barrier installed on the victim’s
execution stack, it does not force the victim to execute the
yieldpoint, but marks the victim’s field stealInProgress as
true. The steal and the victim’s computation then happen
concurrently, with the victim oblivious to the steal. The
previously cloned stack of the victim is reused for the steal
process and offline manipulation of the callee save registers.

7. Performance Evaluation
We start with measuring the percentage of CPU cycles lost
by victims while waiting for the steal to finish. We then
measure the speedup on both the modified and unmodified

Faster Work Stealing With Return Barriers, VMIL 2012 5 2015/8/3



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

2 3 4 5 6 7 8 9 10 11 12

V
ic

ti
m

 w
a

it
 t

im
e

 C
P

U
 c

y
c
le

s
 (

%
)

Threads

JavaWS (Try-Catch)

JavaWS (Try-Catch) with RetBarrier

(a) Jacobi

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

2 3 4 5 6 7 8 9 10 11 12

V
ic

ti
m

 w
a

it
 t

im
e

 C
P

U
 c

y
c
le

s
 (

%
)

Threads

JavaWS (Try-Catch)

JavaWS (Try-Catch) with RetBarrier

(b) LUD

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

2 3 4 5 6 7 8 9 10 11 12

V
ic

ti
m

 w
a

it
 t

im
e

 C
P

U
 c

y
c
le

s
 (

%
)

Threads

JavaWS (Try-Catch)

JavaWS (Try-Catch) with RetBarrier

(c) Heat Diffusion

Figure 4. Percentage of CPU cycles lost by victims waiting
for the steals to finish.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

JavaWS (Try-Catch)

JavaWS (Try-Catch) with RetBarrier

(a) Jacobi

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

JavaWS (Try-Catch)

JavaWS (Try-Catch) with RetBarrier

(b) LUD

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
u

p
 o

v
e

r 
S

e
q

u
e

n
ti
a

l

Threads

JavaWS (Try-Catch)

JavaWS (Try-Catch) with RetBarrier

(c) Heat Diffusion

Figure 5. Speedup relative to sequential Java.

Faster Work Stealing With Return Barriers, VMIL 2012 6 2015/8/3



JavaWS (Try-Catch). We finish by examining the effect of
the return barrier on the steal ratio and steal rate.

7.1 Cost of Stealing
We measure the percentage of CPU cycles lost by the victims
while waiting for the thieves to gather the required informa-
tion from its execution stack. Figure 4 shows this percent-
age for both the modified and unmodified systems. These
results illustrate that using return barrier on a victim’s exe-
cution stack can reduce the stealing overhead significantly,
and by as much as 58%.

7.2 Work-Stealing Performance
Figure 5 shows the scalability of the benchmarks both on the
default JavaWS (Try-Catch) and JavaWS (Try-Catch) with
return barriers. The results show that scalability is not statis-
tically significantly affected by the use of return barriers.

7.3 Steal Ratio and Steal Rate
To ensure that our design did not change the steal ratio and
the steal rate, we measured them on our new design. The
results are the figure 6 and figure 7. The results exactly match
with the results on the unmodified system.

7.4 Summary
These results demonstrate that our approach is extremely ef-
fective at reducing the overhead associated with managing
the work-stealing related information on a victim’s execu-
tion stack. However, we do not notice increased speedup
or increased steal rate even though our new design almost
halved the stealing overhead. This is because the actual over-
head is not large and hence there is no noticeable increase in
performance of the system. However, for the cases where the
cost of steals is significant, our new design will be helpful.

8. Conclusion
We believe that work-stealing will be an increasingly impor-
tant approach for effectively exploiting software parallelism
on parallel hardware. As an extension to our prior work,
here we analyzed the overhead associated with stealing from
the victim’s execution stack. We designed a return barrier-
based victim execution stack and evaluated it using a set of
classical work-stealing benchmarks. Our preliminary results
demonstrate that we can significantly reduce the overhead of
the stealing process.

As future work, we plan to evaluate the steal-N strategy,
which steals more than one frame at a time, and integrate it
with our current work. We also plan to continue exploring
ways in which JVM runtime mechanisms can be adapted to
further improve work-stealing.

References
[1] N. Arora, R. Bolumofe, and C. Plaxton. Thread scheduling

for multiprogrammed multiprocessors. In Proceedings of the

tenth annual ACM symposium on Parallel algorithms and
architectures, pages 119–129. ACM, 1998.

[2] P. Berenbrink, T. Friedetzky, and L. Goldberg. The natural
work-stealing algorithm is stable. In Foundations of Computer
Science, 2001. Proceedings. 42nd IEEE Symposium on, pages
178–187. IEEE, 2001.

[3] R. Blumofe and C. Leiserson. Scheduling multithreaded com-
putations by work stealing. Journal of the ACM (JACM), 46
(5):720–748, 1999. ISSN 0004-5411.

[4] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In Pro-
ceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and appli-
cations, OOPSLA ’05, pages 519–538, New York, NY, USA,
2005. ACM. ISBN 1-59593-031-0.

[5] J. Dinan, D. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha. Scalable work stealing. In Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, page 53. ACM, 2009.

[6] M. Frigo, H. Prokop, M. Frigo, C. Leiserson, H. Prokop,
S. Ramachandran, D. Dailey, C. Leiserson, I. Lyubashevskiy,
N. Kushman, et al. The Cilk project. Algorithms, 1998.

[7] D. Hendler and N. Shavit. Non-blocking steal-half work
queues. In Proceedings of the twenty-first annual symposium
on Principles of distributed computing, pages 280–289. ACM,
2002.

[8] V. Kumar, D. Frampton, S. Blackburn, D. Grove, and
O. Tardieu. Work–stealing without the baggage. In Pro-
ceedings of the 2012 ACM international conference on Object
oriented programming systems languages and applications,
OOPSLA ’12, Tucson, Arizona, USA, Oct. 2012. ACM.

[9] D. Lea. A Java fork/join framework. In Proceedings of the
ACM 2000 conference on Java Grande, JAVA ’00, pages 36–
43, New York, NY, USA, 2000. ACM. ISBN 1-58113-288-3.

[10] R. Lüling and B. Monien. A dynamic distributed load bal-
ancing algorithm with provable good performance. In Pro-
ceedings of the fifth annual ACM symposium on Parallel al-
gorithms and architectures, pages 164–172. ACM, 1993.

[11] MIT. The Cilk project. URL http://supertech.
csail.mit.edu/cilk/index.html.

[12] E. Mohr, D. Kranz, and R. Halstead Jr. Lazy task creation: A
technique for increasing the granularity of parallel programs.
Parallel and Distributed Systems, IEEE Transactions on, 2(3):
264–280, 1991.

[13] J. Reinders. Intel threading building blocks: outfitting C++
for multi-core processor parallelism. O’Reilly Media, Inc.,
2007.

[14] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load
balancing scheme for task allocation in parallel machines. In
Proceedings of the third annual ACM symposium on Parallel
algorithms and architectures, pages 237–245. ACM, 1991.

[15] H. Saiki, Y. Konaka, T. Komiya, M. Yasugi, and T. Yuasa.
Real-time gc in jerty vm using the return-barrier method.
In Object-Oriented Real-Time Distributed Computing, 2005.

Faster Work Stealing With Return Barriers, VMIL 2012 7 2015/8/3

http://supertech.csail.mit.edu/cilk/index.html
http://supertech.csail.mit.edu/cilk/index.html


 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

2 3 4 5 6 7 8 9 10 11 12

S
te

a
ls

 /
 T

a
s
k

Threads

Heat Diffusion

Jacobi

LUD

(a) Steal ratio on default JavaWS (Try-Catch)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

2 3 4 5 6 7 8 9 10 11 12

S
te

a
ls

 /
 T

a
s
k

Threads

Heat Diffusion

Jacobi

LUD

(b) Steal ratio on JavaWS (Try-Catch) with return barrier

Figure 6. Steal ratio comparison with our new implementation.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 3 4 5 6 7 8 9 10 11 12

T
o

ta
l 
S

te
a

ls
 P

e
r 

S
e

c
o

n
d

Threads

Heat Diffusion

Jacobi

LUD

(a) Steal rate on default JavaWS (Try-Catch)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 3 4 5 6 7 8 9 10 11 12

T
o

ta
l 
S

te
a

ls
 P

e
r 

S
e

c
o

n
d

Threads

Heat Diffusion

Jacobi

LUD

(b) Steal rate on JavaWS (Try-Catch) with return barrier

Figure 7. Steal rate comparison with our new implementation.

ISORC 2005. Eighth IEEE International Symposium on, pages
140–148. IEEE, 2005.

[16] O. Tardieu, H. Wang, and H. Lin. A work-stealing scheduler
for X10’s task parallelism with suspension. In Proceedings
of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, pages 267–

276, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1160-1.

[17] T. Yuasa. Real–time garbage collection on general-purpose
machines. Journal of Systems and Software, 11(3):181–198,
1990.

Faster Work Stealing With Return Barriers, VMIL 2012 8 2015/8/3


	Introduction
	Related Work
	Background
	Work-Stealing in X10
	X10 (Try-Catch) Java implementation
	Leveraging Exception Handling Support
	Initiation
	State Management
	Termination

	Return Barriers

	Methodology
	Benchmarks
	Hardware Platform
	Software Platform
	Measurements

	Motivating Analysis
	Steal Rate
	Stealing Overhead

	Implementation
	Installing the First Return Barrier.
	Synchronization Between Thief and Victim During Steal Process.
	Stealing From a Victim with Return Barrier Pre-installed.

	Performance Evaluation
	Cost of Stealing
	Work-Stealing Performance
	Steal Ratio and Steal Rate
	Summary

	Conclusion

