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The "New” Era of Computing

« Commodity multi-core processors
— HPC =>» servers = |laptops = mobile devices

» Software parallelism no longer optional
* Wide adoption of managed languages

Research Opportunities Abound ©
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Our Research Question

How can we apply the

capabilities of managed language runtimes

to enable applications with task-based
parallelism

to effectively exploit current and future
hardware?
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Talk Outline

« Background on X10 and Work-Stealing

* Our Base System
— Try-Catch Work-Stealing [OOPSLA 2012]
* Friendly Barriers [VEE 2014
— Motivating analysis
— How we apply return barriers
— Performance results

 Conclusions
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X10 Summary

*«X10 is
—a programming language
—an open-source tool chain
« compiles X10 to C++ or Java

» X10 tackles programming at scale
—scale out: run across many distributed nodes
—scale up: exploit multi-core and accelerators
—double goal: productivity and performance
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Task Parallelism in X10

static def fib(n:Long):Long { fib(10)
val t1, t2:Long; . T
if (n < 2) return 1; finish
finish { j\
async t1 = fib(n-1); fib(9) async

— £ . T
} t2 = fib(n-2); fib(8)

return t1 + t2; .
} fib(8) async

i
fib(7)
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Understanding Work—-Stealing
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Work-Stealing Without The Baggage | Kumar et al.| OOPSLA12
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Initiation —_— { _Manageme{]t' |

Termination
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Work-Stealing Schedulers

 Common features
— a pool of worker threads
— per-worker deque of pending tasks
— worker pushes and pops tasks from its deque
—idle worker steals tasks from another worker's
deque
* Widely used
— Cilk, Java Fork/Join, TBB, X10, Habenero, ...
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Work-Stealing Without the Baggage
OOPSLA 2012

« JavaWs (Try-Catch)

— Reduced sequential

overheads of work-stealing
from 4.1x to 15%

— Our baseline system
» DefaultWS
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foo() { . . .
finish { Yieldpoint mechanism

X = 810);
$Sin§20; © On-stack replacement

Java try/catch exceptions
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Motivating Analysis
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Methodology
 Benchmarks « Hardware platform
— Jacobi — 2 Intel Xeon E5-2450
— FFT — 8 cores each
~ CilkSort » Software platform
~ Bames-Hut _ Jikes RVM (3.1.3)
— UTS

— LU Decomposition (LUD)
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Steals To Task Ratio
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Steal Rate
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Dynamic Overhead (Victim Stalled)
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Insights

* Forcing victim to wait inside yieldpoint at
every steal attempt is inefficient

* Re-use existing mechanisms inside
modern managed runtime to reduce victim
wait time
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Approach

« Use return barrier to “protect” the victim
from thief

v Victim oblivious to steal from thief

v" Cost of barrier only when victim unwind past
the barrier

v"When above the barrier, victim sees no cost
v"More concurrency between thief and its victim
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Implementation
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Return Barrier

« Allows runtime to intercept a common event
» Hijack a return and bridge to some other method
* Register and stack state preserved
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Return Barrier

* Allows runtime to intercept a common event
» Hijack a return and bridge to some other method

* Register and stack state preserved
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Thief Installs Return Barrier

Yieldpoint
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Stack Growth Direction
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Robbing A Victim With Return Barrier
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Performance Evaluation
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Dynamic Overhead
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Performance Benefit Relative to DefaultW$S
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Free Steals From Return Barrier
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Overhead of Executing Return Barrier
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Comparative Performance
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Summary and Conclusion

» Big Picture: Laziness pays off

— DefaultWS extremely efficient/effective
Tackling dynamic overheads

— grows as parallelism increases

— grows as steal rate increases

Return barrier mechanism protects victim from thief
— Victim oblivious to thief’s activities

Return barrier halves dynamic overhead
Performance benefit (vs DefaultWS) of up to 20%
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