Australian
& National

d
. .
= Universit
e S<]

Friendly Barriers: Efficient Work-Stealing
With Return Barriers

Vivek Kumar?, Stephen M Blackburn', David Grove?

1 The Australian National University
2 IBM T.J. Watson Research

Australian
National

3 §

: :

o = Universit
'A‘l",_“ oo S <J

The "New” Era of Computing

« Commodity multi-core processors
— HPC =>» servers = |laptops = mobile devices

» Software parallelism no longer optional
* Wide adoption of managed languages

Research Opportunities Abound ©

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 2

Australian
> National

d
. .
Tuq <)
‘ll”' Uy coS = J

Our Research Question

How can we apply the

capabilities of managed language runtimes

to enable applications with task-based
parallelism

to effectively exploit current and future
hardware?

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 3

Australian

. » National
Sy University

Talk Outline

« Background on X10 and Work-Stealing

* Our Base System
— Try-Catch Work-Stealing [OOPSLA 2012]
* Friendly Barriers [VEE 2014
— Motivating analysis
— How we apply return barriers
— Performance results

 Conclusions

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 4

Australian
> National

sy University

X10 Summary

*«X10 is
—a programming language
—an open-source tool chain
« compiles X10 to C++ or Java

» X10 tackles programming at scale
—scale out: run across many distributed nodes
—scale up: exploit multi-core and accelerators
—double goal: productivity and performance

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 5

Australian
> National

sy University

Task Parallelism in X10

static def fib(n:Long):Long { fib(10)
val t1, t2:Long; . T
if (n < 2) return 1; finish
finish { j\
async t1 = fib(n-1); fib(9) async

— £ . T
} t2 = fib(n-2); fib(8)

return t1 + t2; .
} fib(8) async

i
fib(7)

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 6

Australian
> National

sy University

Understanding Work—-Stealing

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 7

Australian
National

2% University

I

[l]

|

Ul

|

(((((

|

|

\\\

|

/ \“ H[HH\\

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA12

Australian
> National
23 University

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA12 o

Australian
» National
>y University

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA12 10

Australian
National

25 University

AN
|

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA12 11

Australian
» National
2y University

!
,l
’

‘_—

Initiation —_— { _Manageme{]t' |

Termination

Work-Stealing Without The Baggage | Kumar et al.| OOPSLA12 12

Australian
> National

3
: :
a2y Universit

T Ltran <Y

Work-Stealing Schedulers

 Common features
— a pool of worker threads
— per-worker deque of pending tasks
— worker pushes and pops tasks from its deque
—idle worker steals tasks from another worker's
deque
* Widely used
— Cilk, Java Fork/Join, TBB, X10, Habenero, ...

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 13

Australian
. & National

e Q) UniVerSity

Work-Stealing Without the Baggage
OOPSLA 2012

« JavaWs (Try-Catch)

— Reduced sequential

overheads of work-stealing
from 4.1x to 15%

— Our baseline system
» DefaultWS

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 14

Australian
> National

ey University

foo() { . . .
finish { Yieldpoint mechanism

X = 810);
$Sin§20; © On-stack replacement

Java try/catch exceptions

“
°

}
« Dynamic code patching
" Yieldpoint Mechanism

c S1)
e
O
2 foo
&)
:)
= C
O
5)
X B steal
8
@ A > >

VICTIM THIEF

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 15

Australian
> National

ey University

foo() { . . .
finish { Yieldpoint mechanism

X = 810);
$Sin§20; © On-stack replacement

Java try/catch exceptions

“
°

}
* Dynamic code patching
c | S1)
O
0
2 foo foo
a
=))
2 C C
O
:))
X B steal B
o
P A > > A)
VICTIM THIEF THIEF

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 16

Australian
> National

ey University

foo() { . . .
finish { Yieldpoint mechanism

X = 810);
$Sin§20; © On-stack replacement

Java try/catch exceptions

“
°

}
* Dynamic code patching

5 | S1) S2 >
0
2 foo > foo
:)
<
2 C C
O
:))
x B B
o
P A > A >

VICTIM THIEF

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 17

Australian
> National

ey University

foo() { . . .
finish { Yieldpoint mechanism

X = 810);
$Sin§20; © On-stack replacement

Java try/catch exceptions

“
°

}
* Dynamic code patching

c | S1) S2)
[s)

0

2 foo) foo)
a)

<

S C C

O

:))
x B B

®

P A > A)

VICTIM THIEF

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 18

Australian
> National

>y University

Motivating Analysis

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 19

Australian
> National

d
. .
s = Universit
eSS

Methodology
 Benchmarks « Hardware platform
— Jacobi — 2 Intel Xeon E5-2450
— FFT — 8 cores each
~ CilkSort » Software platform
~ Bames-Hut _ Jikes RVM (3.1.3)
— UTS

— LU Decomposition (LUD)

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 20

Australian
> National

sy University

Steals To Task Ratio

1

0.1 = 1in 10

stolen
0.001 -
0.0001 — 1in 10,000
stolen
0.00001 —

0.000001

Steals / Tasks

2 3 4 5 6 7 8 9 1011 1213 14 15 16
Threads

DefaultWS
Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 21

Australian
> National

sy University

Steal Rate

40

pa

W
o

-
o

Steals per milli-seconds
N
(@)

oz _—

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads
DefaultWS
Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 22

Australian
> National

sy University

Dynamic Overhead (Victim Stalled)
12
yd

~
—~

-
o

Qo

Dynamic overhead (%)
(@)

4
2 | /\/\
0 | ——— | | { I I I I \ \ | | |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Threads
DefaultWS

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 23

Australian
> National

d
. .
=y Universit
iar o]

Insights

* Forcing victim to wait inside yieldpoint at
every steal attempt is inefficient

* Re-use existing mechanisms inside
modern managed runtime to reduce victim
wait time

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 24

Australian
> National

d
. .
=y Universit
iar o]

Approach

« Use return barrier to “protect” the victim
from thief

v Victim oblivious to steal from thief

v" Cost of barrier only when victim unwind past
the barrier

v"When above the barrier, victim sees no cost
v"More concurrency between thief and its victim

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 25

Australian
> National

>y University

Implementation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 26

Australian
> National

ey University

Return Barrier

« Allows runtime to intercept a common event
» Hijack a return and bridge to some other method
* Register and stack state preserved

TOP Frame D
A
c E >
ie)
S
5 D Frame C Method C
<
= C
o
w >
N B
O
)
P A)

BASE
Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 27

Australian
> National

sy University

Return Barrier

* Allows runtime to intercept a common event
» Hijack a return and bridge to some other method

* Register and stack state preserved

)
)

)

TOP
A
c E
O
0
2 D
Q /-
<
= C
o
Q)
v B
O
)
D A
BASE

Frame D

trampoline
method

trampoline method

Frame C

Method C

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14

28

Australian
> National

sy University

Thief Installs Return Barrier

Yieldpoint
TOP mechanism
S E —
3 —ZZZZZ—)
%’ D) (—
.C
*%' C) —
(_g B —
®
n A) —

BASE

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 29

Australian
. » National
ae=ay University

Stack Growth Direction

AT

BASE

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 30

Australian
. » National
ey University

_______ TopP
C A
o
B
2 D
()
<)
= C
s | HZZZZ7-
(D >
v B
(@)
o
g -)

BASE

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 31

Australian
> National

sy University

Robbing A Victim With Return Barrier

________ ToP . Yieldpoint
mechanism

n
»

Stack Growth Direction
g @)

>

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 32

Australian
> National

sy University

Performance Evaluation

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 33

Australian

. » National
ey University

Dynamic Overhead

12
< 10
= Threads = 16
(qv]
g 8
o
>
O 6
©
=
T 4
>
()
2
0

Jacobi FFT CilkSort Barnes-Hut UTS LUD

B DefaultwS [ReturnBarrierWWS
Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 34

Australian

. » National
ey University

Performance Benefit Relative to DefaultW$S

1.34

1.24

Threads = 16
1.14

Performance Benefit

1.04

0.94
Jacobi FFT CilkSort Barnes-Hut UTS LUD

" ReturnBarrierWS
Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 35

Australian
> National

sy University

Free Steals From Return Barrier

60

50 //\
40 \\ Jacobi
30 CilkSort

/4 \ —Barnes-Hut

20 —UTS

/
—LUD
10 ~

I I I I I I I I

2 3 4 5 6 7 8 9 10 11 12
Threads

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 36

Total Free Steals (%)

I 1

13 14 15 16

Australian
> National

sy University

Overhead of Executing Return Barrier

1.2

1 \
0.8 / Jacobi
/\ /\/\/ —FFT
0.6 CilkSort
/ \ / —Barnes-Hut
0.4 —UTS
/ \/ —LUD

0.2
| I

Return Barrier Overhead (%)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Threads

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 37

Australian
> National

sy University

Comparative Performance

W\{ Jacobi

——ReturnBarrierWS
-=-Fork-Join
-e-Habanero-Java

Speedup over Sequential
N w HAN a (@)] ~ 00

O**.N.N.N.I.I‘.

12 3 45 6 7 8 9101112131415 16

Threads

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 38

Australian
. » National
ey University

7

° S = ST)

o

——ReturnBarrierWS
-=-Fork-Join
-e-Habanero-Java

Speedup over Sequential

1 2 3 4 5 6 7 8 9 1011 1213 14 1516
Threads

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 39

Australian
> National

3

: :

= Universit
'ﬁl\,,_“ oo S <J

Summary and Conclusion

» Big Picture: Laziness pays off

— DefaultWS extremely efficient/effective
Tackling dynamic overheads

— grows as parallelism increases

— grows as steal rate increases

Return barrier mechanism protects victim from thief
— Victim oblivious to thief’s activities

Return barrier halves dynamic overhead
Performance benefit (vs DefaultWS) of up to 20%

Friendly Barriers: Efficient Work-Stealing With Return Barriers | Kumar et al. | VEE 14 40

